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A JetNet Generation

The so-called parton-level events are first produced at leading-order using MAD-
GRAPH5_aMCATNLO 2.3.1 [34] with the NNPDF 2.3L.O1 parton distribution functions [35]. To
focus on a relatively narrow kinematic range, the transverse momenta of the partons and undecayed
gauge bosons are generated in a window with energy spread given by Apy/pr = 0.01, centered
at 1 TeV. These parton-level events are then decayed and showered in PYTHIA 8.212 [4] with the
Monash 2013 tune [36], including the contribution from the underlying event. For each original
particle type, 200,000 events are generated. Jets are clustered using the anti-kt algorithm [37],
with a distance parameter of R = 0.8 using the FASTJET 3.1.3 and FASTJET CONTRIB 1.027
packages [38,39]. Even though the parton-level pr distribution is narrow, the jet pr spectrum is
significantly broadened by kinematic recoil from the parton shower and energy migration in and out
of the jet cone. We apply a restriction on the measured jet pr to remove extreme events outside of a
window of 0.8 TeV < pt < 1.6 TeV for the pr = 1 TeV bin.

B Training and Implementation Details

PyTorch code and trained parameters for each model in Table 2 is provided in the supplementary
materials. Models were trained and hyperparameters optimized on clusters of GeForce RTX 2080 Ti
and Tesla V100 GPUs.

B.1 MPGAN

We use the least squares loss function [40] and the RMSProp optimizer with a two time-scale
update rule [30] with a learning rate (LR) for the discriminator three times greater than that of the
generator. The absolute rate differed per jet type. We use LeakyReLU activations (with negative slope
coefficient 0.2) after all MLP layers except for the final generator and discriminator outputs where
tanh and sigmoid activations respectively are applied. We attempted discriminator regularization to
alleviate mode collapse via dropout [41], batch normalization [20], a gradient penalty [42], spectral
normalization [43], adaptive competitive gradient descent [44] and data augmentation of real and
generated graphs before the discriminator [45-47]. Apart from dropout (with fraction 0.5), none of
these demonstrated significant improvement with respect to mode dropping or cloud quality.

We use a generator LR of 10~3 and train for 2000 epochs for gluon jets, 2 x 10~ and 2000 epochs
for top quark jets, and 0.5 x 10~3 and 2500 epochs for light quark jets. We use a batch size of 256
for all jets.

B.2 rGAN, GraphCNNGAN, and PointNet-Mix

For rGAN and GraphCNNGAN we train two variants: (1) using the original architecture hyperparam-
eters as in Refs. [21,22] for the 2048-node point clouds, and (2) using hyperparameters scaled down
to 30-node clouds. The latter variant performed better for both models, and its scores are which are
reported. LRs, batch sizes, loss functions, gradient penalties, optimizers, ratios of critic to generator
updates, activations, number of epochs, are the same as in the original paper and code. We use the
architecture defined in [25] for the PointNet-Mix discriminator.

B.3 FPND

Apart from the number of input particle features (three in our case, excluding the mask feature),
we use the same ParticleNet architecture as in the original paper. We find training with the Adam
optimizer, LR 10, for 30 epochs outperformed the original recommendations on our dataset.
Activations after the first fully connected layer, pre-ReLU, are used for FPND.

C Masking

We experiment with 5 masking strategies, out of which the one described in Sec. 4 was most successful.
The four alternatives, which all involve the generator learning the mask without any external input,
are shown in Fig. 5.
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Figure 5: The four alternative masking strategies which we test.

Loss
o
T

0.8

0.4~

EY

0.2

0.0

Discriminitive real loss |
Discriminitive fake loss
Generative loss

ol

20

80
Epoch

Figure 6: Typical loss curves on light quark jets with the four strategies, with the one depicted

specifically from strategy 3.
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Strategy 1 treats the mask homogenously as simply an extra feature to learn. A variation of this
weights the nodes in the discriminator the mask.

In strategy 2, a mask is calculated for each generated particle using a function of p%!, based on an

empirical minimum cutoff in the dataset. We tested a step function and a continuous mask function
as in the figure. The discriminator functions as the standard MP one described in Sec. 4.

Strategy 3 sees the generator applying an FC layer per particle in the initial cloud to learn the mask.
Standard MP disciminator is used, as well as a variant with the number of unmasked nodes in the
clouds added as an extra feature to the FC layer. In 1 and 3 we test learning both binary and continuous
masks.

Finally, in strategy 4, we train an auxiliary network to choose a number of particles to mask (as
opposed to sampling from the real distribution), which is then passed into the standard MP generator.

We find that while all of these strategies, or variations thereof, are able to successfully produce gluon
jets, the training for each diverges in the fashion depicted in Fig. 6 (despite using all the discriminator
regularization methods mentioned in App. B. We conclude that learning the number of particles is
a significant challenge for the generator, while being a easy feature to discriminate with, and so to
equalize this we use the strategy in Sec. 4 where the number of particles to produce is sampled from
the real distribution instead.



